3.79 \(\int \sin ^m(c+d x) (a+b \tan (c+d x))^3 \, dx\)

Optimal. Leaf size=229 \[ \frac{3 a^2 b \sin ^{m+2}(c+d x) \, _2F_1\left (1,\frac{m+2}{2};\frac{m+4}{2};\sin ^2(c+d x)\right )}{d (m+2)}+\frac{a^3 \cos (c+d x) \sin ^{m+1}(c+d x) \, _2F_1\left (\frac{1}{2},\frac{m+1}{2};\frac{m+3}{2};\sin ^2(c+d x)\right )}{d (m+1) \sqrt{\cos ^2(c+d x)}}+\frac{3 a b^2 \sqrt{\cos ^2(c+d x)} \sec (c+d x) \sin ^{m+3}(c+d x) \, _2F_1\left (\frac{3}{2},\frac{m+3}{2};\frac{m+5}{2};\sin ^2(c+d x)\right )}{d (m+3)}+\frac{b^3 \sin ^{m+4}(c+d x) \, _2F_1\left (2,\frac{m+4}{2};\frac{m+6}{2};\sin ^2(c+d x)\right )}{d (m+4)} \]

[Out]

(a^3*Cos[c + d*x]*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, Sin[c + d*x]^2]*Sin[c + d*x]^(1 + m))/(d*(1 + m
)*Sqrt[Cos[c + d*x]^2]) + (3*a^2*b*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, Sin[c + d*x]^2]*Sin[c + d*x]^(2
+ m))/(d*(2 + m)) + (3*a*b^2*Sqrt[Cos[c + d*x]^2]*Hypergeometric2F1[3/2, (3 + m)/2, (5 + m)/2, Sin[c + d*x]^2]
*Sec[c + d*x]*Sin[c + d*x]^(3 + m))/(d*(3 + m)) + (b^3*Hypergeometric2F1[2, (4 + m)/2, (6 + m)/2, Sin[c + d*x]
^2]*Sin[c + d*x]^(4 + m))/(d*(4 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.449863, antiderivative size = 229, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {4401, 2643, 2564, 364, 2577} \[ \frac{3 a^2 b \sin ^{m+2}(c+d x) \, _2F_1\left (1,\frac{m+2}{2};\frac{m+4}{2};\sin ^2(c+d x)\right )}{d (m+2)}+\frac{a^3 \cos (c+d x) \sin ^{m+1}(c+d x) \, _2F_1\left (\frac{1}{2},\frac{m+1}{2};\frac{m+3}{2};\sin ^2(c+d x)\right )}{d (m+1) \sqrt{\cos ^2(c+d x)}}+\frac{3 a b^2 \sqrt{\cos ^2(c+d x)} \sec (c+d x) \sin ^{m+3}(c+d x) \, _2F_1\left (\frac{3}{2},\frac{m+3}{2};\frac{m+5}{2};\sin ^2(c+d x)\right )}{d (m+3)}+\frac{b^3 \sin ^{m+4}(c+d x) \, _2F_1\left (2,\frac{m+4}{2};\frac{m+6}{2};\sin ^2(c+d x)\right )}{d (m+4)} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^m*(a + b*Tan[c + d*x])^3,x]

[Out]

(a^3*Cos[c + d*x]*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, Sin[c + d*x]^2]*Sin[c + d*x]^(1 + m))/(d*(1 + m
)*Sqrt[Cos[c + d*x]^2]) + (3*a^2*b*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, Sin[c + d*x]^2]*Sin[c + d*x]^(2
+ m))/(d*(2 + m)) + (3*a*b^2*Sqrt[Cos[c + d*x]^2]*Hypergeometric2F1[3/2, (3 + m)/2, (5 + m)/2, Sin[c + d*x]^2]
*Sec[c + d*x]*Sin[c + d*x]^(3 + m))/(d*(3 + m)) + (b^3*Hypergeometric2F1[2, (4 + m)/2, (6 + m)/2, Sin[c + d*x]
^2]*Sin[c + d*x]^(4 + m))/(d*(4 + m))

Rule 4401

Int[u_, x_Symbol] :> With[{v = ExpandTrig[u, x]}, Int[v, x] /; SumQ[v]] /;  !InertTrigFreeQ[u]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 2564

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 2577

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b^(2*IntPart
[(n - 1)/2] + 1)*(b*Cos[e + f*x])^(2*FracPart[(n - 1)/2])*(a*Sin[e + f*x])^(m + 1)*Hypergeometric2F1[(1 + m)/2
, (1 - n)/2, (3 + m)/2, Sin[e + f*x]^2])/(a*f*(m + 1)*(Cos[e + f*x]^2)^FracPart[(n - 1)/2]), x] /; FreeQ[{a, b
, e, f, m, n}, x]

Rubi steps

\begin{align*} \int \sin ^m(c+d x) (a+b \tan (c+d x))^3 \, dx &=\int \left (a^3 \sin ^m(c+d x)+3 a^2 b \sec (c+d x) \sin ^{1+m}(c+d x)+3 a b^2 \sec ^2(c+d x) \sin ^{2+m}(c+d x)+b^3 \sec ^3(c+d x) \sin ^{3+m}(c+d x)\right ) \, dx\\ &=a^3 \int \sin ^m(c+d x) \, dx+\left (3 a^2 b\right ) \int \sec (c+d x) \sin ^{1+m}(c+d x) \, dx+\left (3 a b^2\right ) \int \sec ^2(c+d x) \sin ^{2+m}(c+d x) \, dx+b^3 \int \sec ^3(c+d x) \sin ^{3+m}(c+d x) \, dx\\ &=\frac{a^3 \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{1+m}{2};\frac{3+m}{2};\sin ^2(c+d x)\right ) \sin ^{1+m}(c+d x)}{d (1+m) \sqrt{\cos ^2(c+d x)}}+\frac{3 a b^2 \sqrt{\cos ^2(c+d x)} \, _2F_1\left (\frac{3}{2},\frac{3+m}{2};\frac{5+m}{2};\sin ^2(c+d x)\right ) \sec (c+d x) \sin ^{3+m}(c+d x)}{d (3+m)}+\frac{\left (3 a^2 b\right ) \operatorname{Subst}\left (\int \frac{x^{1+m}}{1-x^2} \, dx,x,\sin (c+d x)\right )}{d}+\frac{b^3 \operatorname{Subst}\left (\int \frac{x^{3+m}}{\left (1-x^2\right )^2} \, dx,x,\sin (c+d x)\right )}{d}\\ &=\frac{a^3 \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{1+m}{2};\frac{3+m}{2};\sin ^2(c+d x)\right ) \sin ^{1+m}(c+d x)}{d (1+m) \sqrt{\cos ^2(c+d x)}}+\frac{3 a^2 b \, _2F_1\left (1,\frac{2+m}{2};\frac{4+m}{2};\sin ^2(c+d x)\right ) \sin ^{2+m}(c+d x)}{d (2+m)}+\frac{3 a b^2 \sqrt{\cos ^2(c+d x)} \, _2F_1\left (\frac{3}{2},\frac{3+m}{2};\frac{5+m}{2};\sin ^2(c+d x)\right ) \sec (c+d x) \sin ^{3+m}(c+d x)}{d (3+m)}+\frac{b^3 \, _2F_1\left (2,\frac{4+m}{2};\frac{6+m}{2};\sin ^2(c+d x)\right ) \sin ^{4+m}(c+d x)}{d (4+m)}\\ \end{align*}

Mathematica [A]  time = 2.51971, size = 205, normalized size = 0.9 \[ \frac{\sin ^{m+1}(c+d x) \left (b \sin (c+d x) \left (\frac{3 a^2 \, _2F_1\left (1,\frac{m+2}{2};\frac{m+4}{2};\sin ^2(c+d x)\right )}{m+2}+b \left (\frac{3 a \sqrt{\cos ^2(c+d x)} \tan (c+d x) \, _2F_1\left (\frac{3}{2},\frac{m+3}{2};\frac{m+5}{2};\sin ^2(c+d x)\right )}{m+3}+\frac{b \sin ^2(c+d x) \, _2F_1\left (2,\frac{m+4}{2};\frac{m+6}{2};\sin ^2(c+d x)\right )}{m+4}\right )\right )+\frac{a^3 \sqrt{\cos ^2(c+d x)} \sec (c+d x) \, _2F_1\left (\frac{1}{2},\frac{m+1}{2};\frac{m+3}{2};\sin ^2(c+d x)\right )}{m+1}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]^m*(a + b*Tan[c + d*x])^3,x]

[Out]

(Sin[c + d*x]^(1 + m)*((a^3*Sqrt[Cos[c + d*x]^2]*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, Sin[c + d*x]^2]*
Sec[c + d*x])/(1 + m) + b*Sin[c + d*x]*((3*a^2*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, Sin[c + d*x]^2])/(2
+ m) + b*((b*Hypergeometric2F1[2, (4 + m)/2, (6 + m)/2, Sin[c + d*x]^2]*Sin[c + d*x]^2)/(4 + m) + (3*a*Sqrt[Co
s[c + d*x]^2]*Hypergeometric2F1[3/2, (3 + m)/2, (5 + m)/2, Sin[c + d*x]^2]*Tan[c + d*x])/(3 + m)))))/d

________________________________________________________________________________________

Maple [F]  time = 0.392, size = 0, normalized size = 0. \begin{align*} \int \left ( \sin \left ( dx+c \right ) \right ) ^{m} \left ( a+b\tan \left ( dx+c \right ) \right ) ^{3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^m*(a+b*tan(d*x+c))^3,x)

[Out]

int(sin(d*x+c)^m*(a+b*tan(d*x+c))^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (d x + c\right ) + a\right )}^{3} \sin \left (d x + c\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^m*(a+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((b*tan(d*x + c) + a)^3*sin(d*x + c)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b^{3} \tan \left (d x + c\right )^{3} + 3 \, a b^{2} \tan \left (d x + c\right )^{2} + 3 \, a^{2} b \tan \left (d x + c\right ) + a^{3}\right )} \sin \left (d x + c\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^m*(a+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

integral((b^3*tan(d*x + c)^3 + 3*a*b^2*tan(d*x + c)^2 + 3*a^2*b*tan(d*x + c) + a^3)*sin(d*x + c)^m, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**m*(a+b*tan(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (d x + c\right ) + a\right )}^{3} \sin \left (d x + c\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^m*(a+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((b*tan(d*x + c) + a)^3*sin(d*x + c)^m, x)